数学六年级《圆的面积》教学设计

时间:2024-08-28 17:50:00
数学六年级《圆的面积》教学设计

数学六年级《圆的面积》教学设计

作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。我们应该怎么写教学设计呢?下面是小编整理的数学六年级《圆的面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学六年级《圆的面积》教学设计1

教学内容:

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

教学目标:

知识与技能:

让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

教学重点:

推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

教学难点:

引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

教具准备:

多媒体课件,圆片等。

教学方法:

自主探究法

教学过程:

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:

①你们想通过什么方法来推导圆的面积计算公式?

②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

数学六年级《圆的面积》教学设计2

设计说明

本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的'。在教学设计上有以下特点:

1.注重联系生活实际,开展探究性的数学活动。

学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。

2.在教学中渗透数学思想,完成新知构建。

在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。

课前准备

教师准备 PPT课件 圆的面积演示教具 大小不同的两张圆形纸片

学生准备 剪刀 小正方形透明塑料片 圆形学具

教学过程

⊙复习铺垫,导入新课

1.回忆圆的周长的计算方法。

(1)已知直径怎样求圆的周长?

(2)已知半径怎样求半圆的周长?

2.建立圆的面积的概念。

(1)感知圆的面积的大小。

师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?

师明确:圆的面积有大有小。

师:谁能说一说什么叫做圆的面积呢?

师指出:圆所占平面的大小叫做圆的面积。

(2)区别圆的面积和周长。

指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?

学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。

设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。

⊙动手操作,探究新知

1.通过度量,猜想圆的面积的大小。

用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。

师:由此看出,要求圆的精确面积是无法通过度量得出的。

2.回忆多边形面积公式的推导过程。

想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?

(课件演示平行四边形的面积推导过程)

过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?

3.动手操作。

(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。

课件演示剪拼的过程:

(2)讨论:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)

④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?

(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)

(3)观察、汇报拼成的长方形与圆的关系。

①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)

圆的半径=长方形的宽

圆的周长的一半=长方形的长

②拼成的长方形的面积与圆的面积有什么关系?

(引导学生理解:形状不同,面积相等)

(4)推导圆的面积计算公式。(引导学生结合图形理解)

因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r

因为C=2πr,所以S圆=πr×rS圆=πr2。

数学六年级《圆的面积》教学设计3

教材分析

教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

学情分析:

1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

教学目标

1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学重点和难点

教学重点: 圆的面积公式的推导及应用公式计算

教学难点:探究圆的面积公式的推导过程

数学六年级《圆的面积》教学设计4

【教学内容】:

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

【教学目标】:

知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

【教具准备】:

多媒体课件,圆片等。

【教学方法】:自主探究法

【教学过程】:

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

3、圆的面积计算公式的推导。

小组合作讨论以下问题:

a、拼成的近似长方形的面积和圆的面积有什么关系?

b、长方形的长与圆的周长有什么关系?

c、长方形的宽与圆的半径有什么关系?

d、你能找出圆的面积计算方法吗?

长方形的面积=长×宽,

所以圆的面积=()×()=()

学生在小组内积极讨论,探究、分析,并将结果汇报。

长方形的长是圆周长的一半,长方形的宽是半径(r)

因为长方形的面积=长×宽

所以圆的面积=∏r×r=r2

齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

三、巩固运用、形成技能

1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

(1)课件出示例1

(2)学生独立审题

(3)教师板演解答过程.

3、求下面圆的面积r=3md=5cm

①学生独立完成

②集体核对时,强调要先算平方再算乘法。

4、判断题(课件出示)

5、拓展练习:机动题

小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

四、课堂总结、深化认知:这节课,你有哪些收获?

五、作业:练习十六2.4题.

附:板书

圆的面积

长方形面积=长×宽

↓↓↓

圆的面积=圆周长的一半×半径

=∏r×r

=∏r2

例1:r:20÷2=10(m)

S:3.14×102=314(m2)

答:它的面积是314m2。

《数学六年级《圆的面积》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式